Exercise 1.20

Four astronauts are in a spherical space station. (a) If, as is typical, each of them breathes about $500 \mathrm{~cm}^{3}$ of air with each breath, approximately what volume of air (in cubic meters) do these astronauts breathe in a year? (b) What would the diameter (in meters) of the space station have to be to contain all this air?

Solution

Let's say it takes 3 seconds to breathe in and breathe out on average.

$$
\frac{500 \mathrm{sms}^{\circ}}{1 \text { breatr }} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3} \times \frac{1 \text { 万reat }}{3 \mathrm{sec}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \times \frac{24 \mathrm{hr}}{1 \text { day }} \times \frac{365 \text { dass }}{1 \text { year }} \approx 5 \times 10^{3} \frac{\mathrm{~m}^{3}}{\text { year }}
$$

The formula for the volume of a sphere is

$$
V=\frac{4}{3} \pi r^{3} .
$$

Solve for the radius.

$$
\begin{gathered}
3 V=4 \pi r^{3} \\
\frac{3 V}{4 \pi}=r^{3} \\
r=\sqrt[3]{\frac{3 V}{4 \pi}}
\end{gathered}
$$

Multiply both sides by 2 to get the diameter.

$$
d=2 r=2 \sqrt[3]{\frac{3 V}{4 \pi}}
$$

Now that the formula is known, plug in the volume for a year's worth of air.

$$
d \approx 2 \sqrt[3]{\frac{3\left(5 \times 10^{3}\right)}{4 \pi}} \approx 20 \mathrm{~meters}
$$

